Microsatellite repeat expansions cause several incurable and lethal neurodegenerative disorders including ataxias, myotonic dystrophy, Huntington's disease and C9ORF72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Abnormal repeat transcripts generated from the expanded loci are substrates of repeat-associated non-AUG (RAN) translation, an unconventional form of translation leading to the production of polymeric repeat proteins with cytotoxic and aggregating properties. The mechanisms involved in the pathogenesis of microsatellite repeat expansion disorders remain a hotly debated topic. They are shared between toxic loss/gain of functions due to intranuclear RNA foci that sequesters RNA-binding proteins and RAN translation of repeat proteins in the cytoplasm. We recently elucidated the molecular mechanism driving the nuclear export of C9ORF72 repeat transcripts and showed for the first time that this pathway can be manipulated to confer neuroprotection. Strikingly, we discovered that intron-retaining C9ORF72 repeat transcripts hijack the physiological NXF1-dependent export pathway by selective RNA-repeat sequestration of SRSF1. Antagonizing SRSF1 and the nuclear export of C9ORF72 repeat transcripts promoted in turn the survival of patient-derived motor neurons and suppressed neurodegeneration-associated motor deficits in Drosophila (Hautbergue et al. Nature Communications 2017; 8:16063). In this invited Research Highlight review, we aim to place this work in the context of our previous studies on the nuclear export of mRNAs, provide a summary of the published research and highlight the significance of these findings as a novel therapeutic strategy for neuroprotection in C9ORF72-ALS/FTD. In addition, we emphasize that protein sequestration, often thought as of inducing loss-of-function mechanisms, can also trigger unwanted protein interactions and toxic gain-of-functions.Keywords: Amyotrophic lateral sclerosis; Frontotemporal dementia; Neurodegeneration; Microsatellite repeat expansions; C9ORF72; RNA nuclear export; SRSF1; NXF1; RAN translation; Therapeutic strategy To cite this article: Lydia M. Castelli, et al. SRSF1-dependent nuclear export of C9ORF72 repeat-transcripts: targeting toxic gain-of-functions induced by protein sequestration as a selective therapeutic strategy for neuroprotection. Ther Targets Neurol