Much recent interest has focused on "open" dynamical systems, in which a classical map or flow is considered only until the trajectory reaches a "hole", at which the dynamics is no longer considered. Here we consider questions pertaining to the survival probability as a function of time, given an initial measure on phase space. We focus on the case of billiard dynamics, namely that of a point particle moving with constant velocity except for mirror-like reflections at the boundary, and give a number of recent results, physical applications and open problems.