Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Turpinia arguta is an excellent medicinal plant mainly used for the treatment of pharyngitis, tonsillitis, and tonsillar abscesses. However, an efficient regeneration protocol using tissue cultures for T. arguta does not exist. Its main medicinal constituents are flavonoids, particularly ligustroflavone and rhoifolin. Here, we aimed to establish a tissue culture system for T. arguta for the first time using annual stem segments with axillary buds harvested from the field of the Jiangxi Academy of Forestry as explants by dynamically determining the accumulation of effective functional components in the tissue culture plantlets. Orthogonal tests were conducted to compare the effects of different explant disinfection times, media, and exogenous hormone ratios on the induction of the axillary bud growth, successional proliferation, and rooting of T. arguta stem segments. The best explant disinfection effect was achieved by disinfecting the T. arguta explant with 75% ethanol for 50 s, followed by 0.1% mercuric chloride (HgCl2) for 6 min, and the optimal media for successional proliferation and rooting were Murashige and Skoog (MS) + 0.2 mg/L of 6-benzyladenine (6-BA), + 0.03 mg/L of naphthaleneacetic acid (NAA), and ½ MS + 2.5 mg/L of indole-3-butyric acid + 0.5 mg/L of NAA, respectively. The detection of ligustroflavone and rhoifolin in tissue culture plantlets 0, 3, and 5 months after transplanting showed a significant increasing trend and eventually exceeded the content requirements of the 2020 Edition ofChinese Pharmacopoeia for T. arguta. Our findings provide, for the first time, an effective tissue culture system for T. arguta, thereby providing important information to support the germplasm preservation, innovation, and application of T. arguta in the future.
Turpinia arguta is an excellent medicinal plant mainly used for the treatment of pharyngitis, tonsillitis, and tonsillar abscesses. However, an efficient regeneration protocol using tissue cultures for T. arguta does not exist. Its main medicinal constituents are flavonoids, particularly ligustroflavone and rhoifolin. Here, we aimed to establish a tissue culture system for T. arguta for the first time using annual stem segments with axillary buds harvested from the field of the Jiangxi Academy of Forestry as explants by dynamically determining the accumulation of effective functional components in the tissue culture plantlets. Orthogonal tests were conducted to compare the effects of different explant disinfection times, media, and exogenous hormone ratios on the induction of the axillary bud growth, successional proliferation, and rooting of T. arguta stem segments. The best explant disinfection effect was achieved by disinfecting the T. arguta explant with 75% ethanol for 50 s, followed by 0.1% mercuric chloride (HgCl2) for 6 min, and the optimal media for successional proliferation and rooting were Murashige and Skoog (MS) + 0.2 mg/L of 6-benzyladenine (6-BA), + 0.03 mg/L of naphthaleneacetic acid (NAA), and ½ MS + 2.5 mg/L of indole-3-butyric acid + 0.5 mg/L of NAA, respectively. The detection of ligustroflavone and rhoifolin in tissue culture plantlets 0, 3, and 5 months after transplanting showed a significant increasing trend and eventually exceeded the content requirements of the 2020 Edition ofChinese Pharmacopoeia for T. arguta. Our findings provide, for the first time, an effective tissue culture system for T. arguta, thereby providing important information to support the germplasm preservation, innovation, and application of T. arguta in the future.
Plants of the subfamily Amaryllidoideae are a source of unique and bioactive alkaloids called Amaryllidaceae alkaloids. The study of their anticancer potential has intensified in recent years. This work aims to locate and characterize the profile of cytotoxic alkaloids biosynthesized and stored in different tissues of Phaedranassa lehmannii Regel using different histochemical methods and chromatographic analysis. The histochemical analysis in the bulbs revealed the presence of alkaloids at the basal edge of the scale-like leaves and bud apical zone. The GC-MS analysis indicated that the bulbs biosynthesize crinane- (9.80 µg/g DW), galanthamine- (8.04 µg/g DW), lycorine- (7.38 µg/g DW), and narciclasine-type (3.75 µg/g DW) alkaloids. The root biosynthesizes alkaloids that are mainly distributed mostly in lycorine- (225.29 µg/g DW) and galanthamine-type (72.35 µg/g DW) alkaloids. The total alkaloids biosynthesized by the root (324.93 µg/g DW) exceeded eleven times the abundance of the alkaloids identified in the bulbs (28.97 µg/g DW). In addition, the total alkaloid fractions exhibited a dose-dependent cytotoxic effect in the evaluated concentrations, with IC50 values of 11.76 ± 0.99 µg/mL and 2.59 ± 0.56 µg/mL against human lung (A549) cancer cells and 8.00 ± 1.35 µg/mL and 18.74 ± 1.99 µg/mL against gastric (AGS) cancer cells. The present study provided evidence to locate and characterize the alkaloids of P. lehmannii grown under nursery conditions as a species producing potential antiproliferative alkaloids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.