Objective
The International Federation of Gynecology and Obstetrics (FIGO) 2023 staging system for endometrial cancer (EC) was released with incorporating histology, lympho-vascular space invasion, and molecular classification together. Our objective is to further explore the clinical utility and prognostic significance of the 2023 FIGO staging system in China.
Methods
A retrospective analysis was conducted for patients who received standard surgeries and underwent genetic testing using multigene next-generation sequencing (NGS) panels between December 2018 and December 2023 at Fudan University Shanghai Cancer Center, Shanghai, China. The genomic and clinical data of all patients were analyzed, and stages were determined by both the 2009 and 2023 FIGO staging systems. Kaplan–Meier estimators and Cox proportional hazards models were used for survival analysis.
Results
A total of 547 patients were enrolled in the study. After the restaged by the FIGO 2023 staging system, stage shifts occurred in 147/547 (26.9%) patients. In patients with early stages in FIGO 2009 (stage I-II), 63 cases were rearranged to IAmPOLEmut and 53 cases to IICmp53abn due to the molecular classification of POLEmut and p53abn. Altogether 345 cases were in stage I, 107 cases in stage II, 69 cases in stage III, and 26 cases in stage IV according to the FIGO 2023 staging criteria. For stage I diseases, the 3-year PFS rate was 92.7% and 95.3% in 2009 and 2023 FIGO staging systems, respectively. The 3-year PFS of stage II in 2023 FIGO was lower than that of FIGO 2009 (3-year PFS: 85.0% versus 90.9%), especially in substage IIC and IICmp53abn. Three cases (12%) of stage IIIA in FIGO 2009 were shifted to stage IA3 FIGO 2023, with 3-year PFS rates of 90.9% versus 100%, respectively. In NGS analysis, the most prevalent gene alterations were observed in PTEN and PIK3CA.
Conclusion
The FIGO 2023 staging system was proved to be a good predictor of survival for EC patients with enhanced precision compared to FIGO 2009. Predominant stage shifts were observed in early-stage diseases. Distinct gene alterations of different subtypes may help to explore more accurate target therapies.