Lipopolysaccharide (LPS), or endotoxin, a structural component of gram-negative bacterial outer membranes, plays a key role in the pathogenesis of septic shock, a syndrome of severe systemic inflammation which leads to multiple-system organ failure. Despite advances in antimicrobial chemotherapy, sepsis continues to be the commonest cause of death in the critically ill patient. This is attributable to the lack of therapeutic options that aim at limiting the exposure to the toxin and the prevention of subsequent downstream inflammatory processes. Polymyxin B (PMB), a peptide antibiotic, is a prototype small molecule that binds and neutralizes LPS toxicity. However, the antibiotic is too toxic for systemic use as an LPS sequestrant. Based on a nuclear magnetic resonance-derived model of polymyxin B-LPS complex, we had earlier identified the pharmacophore necessary for optimal recognition and neutralization of the toxin. Iterative cycles of pharmacophore-based ligand design and evaluation have yielded a synthetically easily accessible N 1 ,mono-alkyl-mono-homologated spermine derivative, DS-96. We have found that DS-96 binds LPS and neutralizes its toxicity with a potency indistinguishable from that of PMB in a wide range of in vitro assays, affords complete protection in a murine model of LPS-induced lethality, and is apparently nontoxic in vertebrate animal models.Endotoxin, or lipopolysaccharide (LPS), a structural component of the outer membrane of most gram-negative bacteria (31), plays a pivotal role in septic shock, a syndrome of systemic toxicity which occurs frequently as a sequel to serious systemic gram-negative infections (23). The activation by LPS of the innate immune response, mediated via toll-like receptor 4 (TLR4) (39), leads to a dysregulated production of numerous inflammatory mediators, including tumor necrosis factor alpha (TNF-␣), interleukin-1 (IL-1), and IL-6 (11), gamma interferon (IFN-␥), and IL-12, which appears to be inadequately compensated for by the production of anti-inflammatory cytokines, such as IL-10 and transforming growth factor  (6). The resultant systemic inflammatory response progresses to the frequently fatal syndrome of multiple-system organ failure (3). Despite continuing advances in antimicrobial chemotherapy, the incidence of sepsis has risen almost threefold from 1979 through 2000 (25), emphasizing an urgent, unmet need to develop therapeutic options specifically targeting the pathophysiology of sepsis.The toxicity of LPS resides in its structurally highly conserved glycolipid component called lipid A (22), which is composed of a hydrophilic, bis-phosphorylated diglucosamine backbone, and a hydrophobic domain comprised of acyl chains in amide and ester linkages (14). Polymyxin B (PMB) is a membrane-active peptide antibiotic (37) known to sequester LPS and abrogate its toxicity (12, 16). The otoand nephrotoxicity of PMB limit its systemic use and have led to the development of an extracorporeal hemoperfusion cartridge based on PMB covalently immobilized on a polysty...