Rationale: Bioactive lipid mediators, derived from membrane lipid precursors, are released into the airway and airspace where they bind high-affinity cognate receptors and may mediate asthma pathogenesis. Lysophosphatidic acid (LPA), a bioactive lipid mediator generated by the enzymatic activity of extracellular autotaxin (ATX), binds LPA receptors, resulting in an array of biological actions on cell proliferation, migration, survival, differentiation, and motility, and therefore could mediate asthma pathogenesis.Objectives: To define a role for the ATX-LPA pathway in human asthma pathogenesis and a murine model of allergic lung inflammation. Methods: We investigated the profiles of LPA molecular species and the level of ATX exoenzyme in bronchoalveolar lavage fluids of human patients with asthma subjected to subsegmental bronchoprovocation with allergen. We interrogated the role of the ATX-LPA pathway in allergic lung inflammation using a murine allergic asthma model in ATX-LPA pathway-specific genetically modified mice. Measurements and Main Results: Subsegmental bronchoprovocation with allergen in patients with mild asthma resulted in a remarkable increase in bronchoalveolar lavage fluid levels of LPA enriched in polyunsaturated 22:5 and 22:6 fatty acids in association with increased concentrations of ATX protein. Using a triple-allergen mouse asthma model, we showed that ATX-overexpressing transgenic mice had a more severe asthmatic phenotype, whereas blocking ATX activity and knockdown of the LPA 2 receptor in mice produced a marked attenuation of Th2 cytokines and allergic lung inflammation. Conclusions: The ATX-LPA pathway plays a critical role in the pathogenesis of asthma. These preclinical data indicate that targeting the ATX-LPA pathway could be an effective antiasthma treatment strategy.Keywords: asthma; lysophosphatidic acid; autotaxin; allergic airway inflammation supplied the ATX inhibitor, GWJ-23. V.A., E.K., and I.N. were involved in discussions related to animal dosage. A.J.M. and S.S.S. provided breeding pairs of ATX-Tg and ATX 1/2 mice. S.J.A. managed the inflammatory cell purification core lab for the SBP-AG protocol, designed experiments, interpreted data, coordinated regular scientific research meetings for the project, and edited the manuscript. V.N. conceptualized the study, designed mouse experiments, interpreted data, provided genetically modified mice, and wrote part of and edited the manuscript. J.W.C. obtained the SBP-AG IRB and IND approval, supervised mouse experiments and performance of the human SBP-AG protocol, designed experiments, interpreted and analyzed data, and edited the manuscript. All authors contributed to data discussion and review of the manuscript.Correspondence and requests for reprints should be addressed to John W.
What This Study Adds to the FieldThe enzyme autotaxin (ATX) and two of its LPA products, LPA 22:5 and LPA 22:6, are markedly and selectively increased in the bronchoalveolar lavage fluid of human patients with asthma in response to airway allergen ch...