Background and objective: With the exact clinical efficacy, Buyang Huanwu decoction (BHD) is a classical prescription for the treatment of ischemic stroke (IS). Here, we aimed to investigate the pharmacological mechanisms of BHD in treating IS using systems biology approaches.Methods: The bioactive components and potential targets of BHD were screened by TCMSP, BATMAN-TCM, ETCM, and SymMap databases. Besides, compounds that failed to find the targets from the above databases were predicted through STITCH, SWISS, and SEA. Moreover, six databases were searched to mine targets of IS. The intersection targets were obtained, and analyzed by GO and KEGG enrichment. Furthermore, BHD-IS PPI network, compound-compound target-IS network and pathway of drug-compound target-IS network were constructed by Cytoscape 3.6.0. Finally, AutoDock was used for molecular docking verification.Results:A total of 253 putative targets were obtained from 60 active compounds in BHD. Among them, 62 targets were related to IS. PPI network showed that the top ten key targets were IL6, TNF, VEGFA, and AKT1, etc. The enrichment analysis demonstrated candidate BHD targets were more frequently involved TNF, PI3K-Akt, and NF-kappa B signaling pathway. Network topology analysis showed that Radix Astragali was the main herb in BHD, and the key components were quercetin, beta-Sitosterol, kaempferol, and stigmasterol, etc. The results of molecular docking showed the active components in BHD had a good binding ability with the key targets.Conclusions: This study firstly adopted the methods of network pharmacology and molecular docking to reveal the relationships among herbs in BHD, the putative targets and IS-related pathways.