The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) can trigger growth inhibition, epithelial-mesenchymal transition (EMT) -like cell scattering, and migration of hepatoma cells HepG2 in a protein kinase C-A (PKC-A) -dependent manner. Saikosaponin a, an ingredient of antitumorigenic Chinese herb Sho-Saiko-to, inhibited cell growth but did not induce EMT-like cell scattering and cell migration of HepG2. Saikosaponin a and TPA induced transient (for 30 minutes) and sustained (until 6 hours) phosphorylation of extracellular signal-regulated kinase (ERK), respectively. Generation of the reactive oxygen species (ROS) was induced by TPA, but not saikosaponin a, for 3 hours. As expected, scavengers of ROS, such as superoxide dismutase, catalase, and mannitol, and the thiol-containing antioxidant N-acetylcystein dramatically suppressed the TPA-triggered cell migration but not growth inhibition of HepG2. The generation of ROS induced by TPA was PKC, but not ERK, dependent. On the other hand, scavengers of ROS and N-acetylcystein also prevented PKC activation and ERK phosphorylation induced by TPA. On the transcriptional level, TPA can induce gene expression of integrins A 5 , A 6 , and B 1 and reduce gene expression of E-cahedrin in a PKC-and ROS-dependent manner. In conclusion, ROS play a central role in mediating TPA-triggered sustained PKC and ERK signaling for regulation of gene expression of integrins and E-cahedrin that are responsible for EMT and migration of HepG2. (Mol Cancer Res 2006;4(10):747 -58)