Freshly isolated rat hepatocytes were plated for 4-6 h and either loaded with (2',7)-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) or allowed to endocytose fluorescein isothiocyanate (FITC)-coupled dextran in order to study the effects of aniso-osmotic exposure and oxidative stress on cytosolic (pHcyt) and apparent vesicular pH (pHves) by single-cell fluorescence recordings. In the presence of normo-osmotic (305 mosmol/l) medium pHcyt was 7.23 +/- 0.03 (n = 108), whereas an apparent pH of 6.07 +/- 0.02 (n = 156) was found in the vesicular compartment accessible to endocytosed FITC-dextran. Substitution of 60 mM NaCl against 120 mM raffinose had no effect on pHcyt or apparent pHves, whereas addition of NH4Cl increased both pHcyt and apparent pHves. Hypo-osmotic cell swelling lowered pHcyt, whereas simultaneously apparent pHves increased. These effects were rapidly reversible upon re-institution of normo-osmotic media. Similarly, an increase of apparent pHves was observed when cell swelling was induced by Ba2+, glutamine or histidine. Conversely, hyperosmotic cell shrinkage due to addition of NaCl or raffinose led to a cytosolic alkalinization and a vesicular acidification. Both, H2O2 (0.2 mmol/l) and t-butyl-hydroperoxide (0.2 mmol/l) were without effect on pHcyt, but lowered apparent pHves by about 0.2 pH units. Ba2+ (1 mmol/l) diminished the acidifying effect of the hydroperoxides by about 50%. Pretreatment of the cells with colchicine, but not with lumicolchicine, largely abolished the effects of aniso-osmolarity and hydroperoxides on pHves. The data suggest that hepatocellular hydration affects the proton gradients built up across the membranes of endocytotic FITC-dextran-accessible compartments in a microtubule-dependent way. They further suggest that hydroperoxides induce vesicular acidification in a colchicine- and Ba(2+)-sensitive way. Because hydroperoxides induce Ba(2+)-sensitive cell shrinkage [Hallbrucker, Ritter, Lang, Gerok and Häussinger (1992) Eur. J. Biochem. 211, 449-458], the results are compatible with the view that hydroperoxide-induced cell shrinkage mediates vesicular acidification. It is concluded that modulation of vesicular pH by the hepatocellular hydration state may play a role in triggering some metabolic changes in response to cell swelling/shrinkage.