Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In recent years, there has been a remarkable increase in the usage of Deep Neural Networks (DNNs) for addressing and solving electrical field problems. This research primarily aims to present an advanced approach to classify different motor faults based on their time-series data by implementing a new Recurrent Neural Network (RNN) model that consists of mixed Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and two Fully Connected (FC) layers. The main idea of this study centers on developing one comprehensive model capable of categorizing primary motor faults. The proposed model is supposed to classify 10 different classes, extracted from the Machinery Fault Database (MaFaulDa), which are normal (no fault), vertical misalignment, horizontal misalignment, imbalance, overhang-ball, overhangcage, overhang-outer race, underhang-ball, underhang-outer race, and underhang-cage. Classifying 10 different situations can be considered as a notable classification problem. Additionally, the learning period did not include any data augmentation, which reflects the model's power in training over the available data. Significantly, the accuracy of the model is enhanced through setting precise values for hyperparameters, including network structure (number of layers and neurons), learning rate, regularization, optimizer type, number of epochs, and more. The obtained train-validation-test accuracies from the proposed model are 99.87%, 99.599%, and 99.48%, respectively. The accuracy of the model represents the highest accuracy between other publications. This advanced approach offers numerous advantages, including early-stage fault detection, improved robustness in industrial maintenance, and generating fast and intelligent alerts, thereby reducing the possible damages to the electrical instruments.
In recent years, there has been a remarkable increase in the usage of Deep Neural Networks (DNNs) for addressing and solving electrical field problems. This research primarily aims to present an advanced approach to classify different motor faults based on their time-series data by implementing a new Recurrent Neural Network (RNN) model that consists of mixed Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and two Fully Connected (FC) layers. The main idea of this study centers on developing one comprehensive model capable of categorizing primary motor faults. The proposed model is supposed to classify 10 different classes, extracted from the Machinery Fault Database (MaFaulDa), which are normal (no fault), vertical misalignment, horizontal misalignment, imbalance, overhang-ball, overhangcage, overhang-outer race, underhang-ball, underhang-outer race, and underhang-cage. Classifying 10 different situations can be considered as a notable classification problem. Additionally, the learning period did not include any data augmentation, which reflects the model's power in training over the available data. Significantly, the accuracy of the model is enhanced through setting precise values for hyperparameters, including network structure (number of layers and neurons), learning rate, regularization, optimizer type, number of epochs, and more. The obtained train-validation-test accuracies from the proposed model are 99.87%, 99.599%, and 99.48%, respectively. The accuracy of the model represents the highest accuracy between other publications. This advanced approach offers numerous advantages, including early-stage fault detection, improved robustness in industrial maintenance, and generating fast and intelligent alerts, thereby reducing the possible damages to the electrical instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.