2024
DOI: 10.1088/2632-2153/ad4510
|View full text |Cite
|
Sign up to set email alerts
|

Machine learned environment-dependent corrections for a spds∗ empirical tight-binding basis

Daniele Soccodato,
Gabriele Penazzi,
Alessandro Pecchia
et al.

Abstract: Empirical tight-binding (ETB) methods have become a common choice to simulate electronic and transport properties for systems composed of thousands of atoms. However, their performance is profoundly dependent on the way the empirical parameters were fitted, and the found parametrizations often exhibit poor transferability. In order to mitigate some of the the criticalities of this method, we introduce a novel Δ-learning scheme, called MLΔTB. After being trained on a custom data set composed of ab-initio band s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 62 publications
0
0
0
Order By: Relevance