2023
DOI: 10.48550/arxiv.2303.11266
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Machine Learning Aided Dimensionality Reduction towards a Resource Efficient Projective Quantum Eigensolver

Abstract: The recently developed Projective Quantum Eigensolver (PQE) has been demonstrated as an elegant methodology to compute the ground state energy of molecular systems in Noisy Intermdiate Scale Quantum (NISQ) devices. The iterative optimization of the ansatz parameters involves repeated construction of residues on a quantum device. The quintessential pattern of the iteration dynamics, when projected as a time discrete map, suggests a hierarchical structure in the timescale of convergence, effectively partitioning… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 56 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?