Abstract:Serological population surveillance can elucidate immunity landscapes against SARS-CoV-2 variants and are critical in monitoring infectious disease spread, evolution, and outbreak risks. However, current serological tests fall short of capturing complex humoral immune responses from different communities. Here, we report a machine-learning (ML)-aided nanobiosensor that can simultaneously quantify antibodies against the ancestral strain and Omicron variants of SARS-CoV-2 with epitope resolution. Our approach is… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.