Autonomous cars are now possible due to significant advances in robotics and intelligent control systems. Before these vehicles can safely operate in traffic and other hostile environments, there are many navigation, vision, and control issues. We want techniques that are both cost-effective and efficient, so that the field of research and academia may fully embrace self-driving cars. Within this scenario, we need something that can convert people to autonomous automobiles and include existing vehicles so that academics and explorers can access them. This study proposes a flexible mechanical layout that can be assembled in a short time and installed in most modern automobiles; it can also be used as a stepping stone in the development of autonomous vehicles. Using various actuators, conventional automobiles can be converted into autonomous vehicles. In the context of motor vehicle automation, motors are often used as actuators. In addition to motors, a pneumatic system was developed to automate the predetermined steps. An autonomous vehicle's mechanical arrangement is crucial, and it must be regularly updated and built to be robust in the face of dynamic conditions. We re-implemented two additional convolutional neural networks in an effort to conduct an objective test of their proposed network and compare our system's structure, technical complexity, and performance test during autonomous driving with theirs. This predicted network is around 250 times larger than the Alex Net network and four times larger than Pilot Net after training. Although the complexity and measurement of the publication's system are lower than other models that contribute lower latency and greater speed throughout inference, the operation was claimed by our system, which achieved autonomous driving with an equivalent efficacy as that achieved with two other models. The projected deep neural system reduces the need to infer ultra-fast computational hardware. This is important for cost efficiency, scale, and cost.