2022
DOI: 10.1101/2022.10.05.22280750
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Machine learning analysis of a digital insole versus clinical standard gait assessments for digital endpoint development

Abstract: Biomechanical gait analysis informs clinical practice and research by linking characteristics of gait with neurological or musculoskeletal injury or disease. However, there are limitations to analyses conducted at gait labs as they require onerous construction of force plates into laboratories mimicking the lived environment, on-site patient assessments, as well as requiring specialist technicians to operate. Digital insoles may offer patient-centric solutions to these challenges. In this work, we demonstrate … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?