2023
DOI: 10.20944/preprints202303.0510.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Machine Learning and Explainable Artificial Intelligence using Counterfactual Explanations for Evaluating Posture Parameters

Abstract: Postural deficits such as hyperlordosis (hollow back) or hyperkyphosis (hunchback) are relevant health issues. Diagnoses depend on the experience of the examiner and are therefore often subjective and prone to errors. Machine learning (ML) methods in combination with explainable ar-tificial intelligence (XAI) tools have proven useful for providing an objective, data-based orien-tation. However, only a few works have considered posture parameters, leaving the potential of more human-friendly XAI interpretations… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 38 publications
0
0
0
Order By: Relevance