Machine learning and feature selection: Applications in economics and climate change
Berkay Akyapı
Abstract:Feature selection is an important component of machine learning for researchers that are confronted with high dimensional data. In the field of economics, researchers are often faced with high dimensional data, particularly in the studies that aim to understand the channels through which climate change affects the welfare of countries. This work reviews the current literature that introduces various feature selection algorithms that may be useful for applications in this area of study. The article first outlin… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.