Abstract:First-principles computations are the driving force behind numerous discoveries of hydride-based superconductors, mostly at high pressures, during the last decade. Machine-learning (ML) approaches can further accelerate the future discoveries if their reliability can be improved. The main challenge of current ML approaches, typically aiming at predicting the critical temperature Tc of a solid from its chemical composition and target pressure, is that the correlations to be learned are deeply hidden, indirect, … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.