Machine learning approaches for predicting sleep arousal response based on heart rate variability, oxygen saturation, and body profiles
Chih-Fan Kuo,
Cheng-Yu Tsai,
Wun-Hao Cheng
et al.
Abstract:Objective Obstructive sleep apnea is a global health concern, and several tools have been developed to screen its severity. However, most tools focus on respiratory events instead of sleep arousal, which can also affect sleep efficiency. This study employed easy-to-measure parameters—namely heart rate variability, oxygen saturation, and body profiles—to predict arousal occurrence. Methods Body profiles and polysomnography recordings were collected from 659 patients. Continuous heart rate variability and oximet… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.