Background
Natural menopause is defined as the permanent cessation of menstruation that occurs after 12 consecutive months of amenorrhea without any obvious pathological or physiological cause. The age of this phenomenon has been reported to be associated with several health outcomes.
Objectives
This study aimed to estimate the Age at Natural Menopause (ANM) and to identify reproductive and demographic factors affecting ANM.
Methods
This cross-sectional, population-based study was conducted on 2517 post-menopausal women aged 40–70 years participating in the first phase of the PERSIAN cohort study of Kharameh, Iran, during 2014–2017. To more accurately detect the determinants of ANM, we applied multiple linear regression beside some machine learning algorithms including conditional tree, conditional forest, and random forest. Then, the fitness of these methods was compared using Mean Squared Error (MSE) and Pearson correlation coefficient.
Results
The mean±SD of ANM was 48.95±6.13. Both applied forests provided more accurate results and identified more predictors. However, according to the final comparison, the conditional forest was the most accurate method which recognized that more pregnancies, longer breastfeeding, Fars ethnicity, and urbanization have the greatest impact on later ANM.
Conclusions
This study found a wide range of reproductive and demographic factors affecting ANM. Considering our findings in decision-making can reduce the complications related to this phenomenon and, consequently, improve the quality of life of post-menopausal women.