2005
DOI: 10.5194/aab-48-138-2005
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning as an aid to management decisions on high somatic cell counts in dairy farms

Abstract: High somatic cell counts (SCC) is associated with mastitis infection, in dairy herds, worldwide. This work describes Machine Learning (ML) techniques designed to improve the information offered to farmers on animals producing high SCCs according to particular herd profiles. The analysed population included 71 dairy farms in Asturias (Northern Spain) and a total of 2,407 lactating cows. Four sources of information were available: a) a questionnaire survey describing facilities, milking routines and management p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2006
2006
2022
2022

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 12 publications
0
2
0
1
Order By: Relevance
“…In other words, the relevancy (see Goyache et al, 2005) of the different attributes (and their weight) to obtain sound SEUROP conformation grading was assessed. The method employed consisted in the gradual reduction of the number of attributes.…”
Section: Machine Learning Algorithmsmentioning
confidence: 99%
“…In other words, the relevancy (see Goyache et al, 2005) of the different attributes (and their weight) to obtain sound SEUROP conformation grading was assessed. The method employed consisted in the gradual reduction of the number of attributes.…”
Section: Machine Learning Algorithmsmentioning
confidence: 99%
“…In the present study, we used a CMT scoring system that is frequently applied for screening dairy cows for IMI (Sargeant et al, 2001). This CMT score increases as SCC increases (Goyache et al, 2005). The sensitivities for detecting IMI with any pathogen, IMI with a major pathogen, and IMI with a minor pathogen were 56.7, 66.7, and 49.5%, respectively (Sargeant et al, 2001).…”
mentioning
confidence: 99%
“…maschinelle Vorstimulation beim Maschinenmelken ist aber eine entscheidende Voraussetzung für die rechtzeitige Auslösung des Milchejektionsreflexes und die Gesunderhaltung der Euter. Die Erkenntnis, dass der alleinige Reiz, den die pulsierenden Zitzengummis beim Maschinenmelken auf die Zitzen ausüben, selten eine vollwertige Milchejektion hervorruft, macht einen Komplex der Eutervorbereitung notwendig, der eine Reizung hauptsächlich der berührungsempfindlichen Zitzen-rezeptoren garantiert und das Vormelken, das Euterreinigen und die Massage beinhaltet (MIELKE et al 1962;KANSWOHL, 1986;HAMANN, 1992;NAUMANN et al, 1998;SCHULZ, 2003;Tröger 2003;SKRZYPEK et al, 2003;GOYACHE et al, 2005). Bei den angegebenen 60 s handelt es sich um keinen fixen Wert, da die optimale Stimulationsdauer in Abhängigkeit von der Milchmenge im Euter stark variiert (WEISS et al, 2005).…”
Section: Introductionunclassified