Thermal resistance of energetic materials is critical due to its impact on safety and sustainability. However, developing predictive models remains challenging because of data scarcity and limited insights into quantitative structure−property relationships. In this work, a deep learning framework, named EM-thermo, was proposed to address these challenges. A data set comprising 5029 CHNO compounds, including 976 energetic compounds, was constructed to facilitate this study. EM-thermo employs molecular graphs and direct message-passing neural networks to capture structural features and predict thermal resistance. Using transfer learning, the model achieves an accuracy of approximately 97% for predicting the thermal-resistance property (decomposition temperatures above 573.15 K) in energetic compounds. The involvement of molecular descriptors improved model prediction. These findings suggest that EM-thermo is effective for correlating thermal resistance from the atom and covalent bond level, offering a promising tool for advancing molecular design and discovery in the field of energetic compounds.