Machine Learning–Assisted Risk Assessment of Pitting Corrosion Susceptibility of AA1050 in Ethanol‐Containing Fuels
Lukas C. Jarren,
Eugen Gazenbiller,
Visheet Arya
et al.
Abstract:The ability to assess the risk of corrosion of metallic structures in particular environments holds considerable significance in the field of automotive industry. In recent years, machine learning has evolved into a crucial tool to evaluate the complex and multidimensional corrosion phenomena. In this paper, the special case of non‐aqueous alcoholate pitting corrosion of AA1050 in ethanol‐blended fuels with water and chloride contamination is examined via supervised machine learning techniques in order to dist… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.