Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeThe purpose of this research was to develop and evaluate a machine learning (ML) algorithm to accurately predict bamboo compressive strength (BCS). Using a dataset of 150 bamboo samples with features such as cross-sectional area, dry weight, density, outer diameter, culm thickness and load, various ML algorithms including artificial neural network (ANN), extreme learning machine (ELM) and support vector regression (SVR) were tested. The ELM algorithm outperformed others, showing superior accuracy based on metrics like R2, MSE, RMSE, MAE and MAPE. The study highlights the efficacy of ELM in enhancing the precision and reliability of BCS predictions, establishing it as a valuable tool for assessing bamboo strength.Design/methodology/approachThis study experimentally created a dataset of 150 bamboo samples to predict BCS using ML algorithms. Key predictive features included cross-sectional area, dry weight, density, outer diameter, culm thickness and load. The performance of various ML algorithms, including ANN, ELM and SVR, was evaluated. ELM demonstrated superior performance based on metrics such as coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), establishing its robustness in predicting BCS accurately.FindingsThe study found that the ELM algorithm outperformed other ML algorithms, including ANN and SVR, in predicting BCS. ELM achieved the highest accuracy based on key metrics such as R2, MSE, RMSE, MAE and MAPE. These results indicate that ELM is a highly effective and reliable tool for predicting the compressive strength of bamboo, thereby enhancing the precision and dependability of BCS evaluations.Originality/valueThis study is original in its application of the ELM algorithm to predict BCS using experimentally derived data. By comparing ELM with other ML algorithms like ANN and SVR, the research establishes ELM’s superior performance and reliability. The findings demonstrate the significant potential of ELM in material strength prediction, offering a novel and robust approach to evaluating bamboo’s compressive properties. This contributes valuable insights into the field of material science and engineering, particularly in the context of sustainable construction materials.
PurposeThe purpose of this research was to develop and evaluate a machine learning (ML) algorithm to accurately predict bamboo compressive strength (BCS). Using a dataset of 150 bamboo samples with features such as cross-sectional area, dry weight, density, outer diameter, culm thickness and load, various ML algorithms including artificial neural network (ANN), extreme learning machine (ELM) and support vector regression (SVR) were tested. The ELM algorithm outperformed others, showing superior accuracy based on metrics like R2, MSE, RMSE, MAE and MAPE. The study highlights the efficacy of ELM in enhancing the precision and reliability of BCS predictions, establishing it as a valuable tool for assessing bamboo strength.Design/methodology/approachThis study experimentally created a dataset of 150 bamboo samples to predict BCS using ML algorithms. Key predictive features included cross-sectional area, dry weight, density, outer diameter, culm thickness and load. The performance of various ML algorithms, including ANN, ELM and SVR, was evaluated. ELM demonstrated superior performance based on metrics such as coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), establishing its robustness in predicting BCS accurately.FindingsThe study found that the ELM algorithm outperformed other ML algorithms, including ANN and SVR, in predicting BCS. ELM achieved the highest accuracy based on key metrics such as R2, MSE, RMSE, MAE and MAPE. These results indicate that ELM is a highly effective and reliable tool for predicting the compressive strength of bamboo, thereby enhancing the precision and dependability of BCS evaluations.Originality/valueThis study is original in its application of the ELM algorithm to predict BCS using experimentally derived data. By comparing ELM with other ML algorithms like ANN and SVR, the research establishes ELM’s superior performance and reliability. The findings demonstrate the significant potential of ELM in material strength prediction, offering a novel and robust approach to evaluating bamboo’s compressive properties. This contributes valuable insights into the field of material science and engineering, particularly in the context of sustainable construction materials.
The integration of machine learning (ML) into material manufacturing has driven advancements in optimizing biopolymer production processes. ML techniques, applied across various stages of biopolymer production, enable the analysis of complex data generated throughout production, identifying patterns and insights not easily observed through traditional methods. As sustainable alternatives to petrochemical-based plastics, biopolymers present unique challenges due to their reliance on variable bio-based feedstocks and complex processing conditions. This review systematically summarizes the current applications of ML techniques in biopolymer production, aiming to provide a comprehensive reference for future research while highlighting the potential of ML to enhance efficiency, reduce costs, and improve product quality. This review also shows the role of ML algorithms, including supervised, unsupervised, and deep learning algorithms, in optimizing biopolymer manufacturing processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.