2023
DOI: 10.1016/j.ibmed.2023.100100
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning-based approach to the diagnosis of cardiovascular vascular disease using a combined dataset

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(3 citation statements)
references
References 11 publications
0
2
0
Order By: Relevance
“…Karena itu, merupakan suatu keharusan untuk mengembangkan metode klasifikasi yang akurat dan efektif dalam proses diagnosis penyakit kardiovaskular. [3].…”
Section: Pendahuluanunclassified
“…Karena itu, merupakan suatu keharusan untuk mengembangkan metode klasifikasi yang akurat dan efektif dalam proses diagnosis penyakit kardiovaskular. [3].…”
Section: Pendahuluanunclassified
“…Identifying an appropriate feature subset for efficient classification is a difficult issue that requires much effort. A thorough search of the data set's sample space is required to get this result [20]. According to, increasingly contribute to the advancement of some developing results for a potentially successful framework for the detection of heart disease.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Working with patient databases for patients with heart disease is a practical application. Therefore, it is reasonable to consider using the knowledge of diverse professionals compiled in databases to aid in the diagnosis process [ 15 ]. Every conventional model for assessing CVD risk implicitly assumes that every risk factor is linearly related to the CVD outcome [ 14 ].…”
Section: Introductionmentioning
confidence: 99%