2023
DOI: 10.3389/fpubh.2023.1195961
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning-based cognitive load prediction model for AR-HUD to improve OSH of professional drivers

Abstract: MotivationAugmented reality head-up display (AR-HUD) interface design takes on critical significance in enhancing driving safety and user experience among professional drivers. However, optimizing the above-mentioned interfaces poses challenges, innovative methods are urgently required to enhance performance and reduce cognitive load.DescriptionA novel method was proposed, combining the IVPM method with a GA to optimize AR-HUD interfaces. Leveraging machine learning, the IVPM-GA method was adopted to predict c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 65 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?