Machine learning based intratumor heterogeneity signature for predicting prognosis and immunotherapy benefit in stomach adenocarcinoma
Hongcai Chen,
Zhiwei Zheng,
Cui Yang
et al.
Abstract:Stomach adenocarcinoma (STAD) is a prevalent malignancy that is highly aggressive and heterogeneous. Intratumor heterogeneity (ITH) showed strong link to tumor progression and metastasis. High ITH may promote tumor evolution. An ITH-related signature (IRS) was created using as integrative technique including 10 machine learning methods based on TCGA, GSE15459, GSE26253, GSE62254 and GSE84437 datasets. The relevance of IRS in predicting the advantages of immunotherapy was assessed using a number of prediction s… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.