Embedding household appliances with smart capabilities is becoming common practice among major fabric-care producers that seek competitiveness on the market by providing more efficient and easy-to-use products. In Vertical Axis Washing Machines (VA-WM), knowing the laundry composition is fundamental to setting the washing cycle properly with positive impact both on energy/water consumption and on washing performance. An indication of the load typology composition (cotton, silk, etc.) is typically provided by the user through a physical selector that, unfortunately, is often placed by the user on the most general setting due to the discomfort of manually changing configurations. An automated mechanism to determine such key information would thus provide increased user experience, better washing performance, and reduced consumption; for this reason, we present here a data-driven soft sensor that exploits physical measurements already available on board a commercial VA-WM to provide an estimate of the load typology through a machine-learning-based statistical model of the process. The proposed method is able to work in a resource-constrained environment such as the firmware of a VA-WM.