SEG Technical Program Expanded Abstracts 2018 2018
DOI: 10.1190/segam2018-2996973.1
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning–based method for automated well-log processing and interpretation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
8
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 29 publications
(11 citation statements)
references
References 8 publications
0
8
0
3
Order By: Relevance
“…Por último, Khandelwal y Singh (2010) se dedicaron a predecir los valores de porosidad neutrón y densidad empleando los parámetros de entrada de los registros de rayos gamma, resistividad y sónico. Esto sin mencionar las investigaciones realizadas para automatizar la interpretación estratigráfica (Igbokwe, 2011;Wu y Nyland, 1987) y el procesamiento de registros de pozo (Wu et al, 2018).…”
Section: Discussionunclassified
“…Por último, Khandelwal y Singh (2010) se dedicaron a predecir los valores de porosidad neutrón y densidad empleando los parámetros de entrada de los registros de rayos gamma, resistividad y sónico. Esto sin mencionar las investigaciones realizadas para automatizar la interpretación estratigráfica (Igbokwe, 2011;Wu y Nyland, 1987) y el procesamiento de registros de pozo (Wu et al, 2018).…”
Section: Discussionunclassified
“…这 就导致类似方法对专家工作辅助的有限性, 未能完全将专家时间从繁杂的基础性工作中释放, 对专家 的人工依赖过高, 所需要的时间成本过于高昂. 因此, 自动化的油气储集层识别技术一直以来就是学 术界以及工业界探索的重要课题 [9,10] . 近些年来, 随着计算机技术的不断发展, 尤其是以机器学习、深 度学习为代表的人工智能技术, 使得越来越多的研究者开始尝试使用智能技术来对海量的地质测井数 据进行分析解释.…”
Section: 地质与油气智能勘测研究unclassified
“…事实上, 随着计算机技术的不断发展, 尤其是人工智能技术的突破, 近些年来越来越多的研究者开 始关注采用计算机技术辅助测井解释以及智能油气储集层识别任务 [9,10] . 真实工业场景下的智能油 其中, 基于相似性建模主要是依赖时间序列数据间的相似度度量方法, 对序列类别按照相似关系进行 预测.…”
unclassified
“…It has been widely explored in all different applications, including those in geophysics, due to its great potential in pattern recognition and nonlinear regression. In geophysics, specifically for well log measurements, unsupervised learning algorithms such as self-organizing map, cross-entropy clustering, and Gaussian mixture model have been applied to logs for automatic zoning and lithofacies recognition (Fung et al, 1995;Wu et al, 2018). Supervised learning methods, mainly classification or regression neural networks, have been employed for lithological classification, and permeability, porosity, or shear wave velocity estimation from well log data (Ahmadi & Chen, 2019;An et al, 2018;Anemangely et al, 2019;Bestagini et al, 2017).…”
Section: Introductionmentioning
confidence: 99%