2023
DOI: 10.31814/stce.nuce2023-17(1)-06
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning-based pedo transfer function for estimating the soil compression index

Abstract: Soil compression index (Cc) plays a vital role in describing the settlement behaviors of geotechnical infrastructures. The conventional Oedometer test broadly used to determine Cc is time-consuming and expensive, which challenges incorporating the high spatial variability of Cc. Alternatively, this study utilized the pedo transfer function (PTF) concept to develop a predictive model on the extreme gradient boosting (XGB) framework for estimating Cc with high accuracy and low effort. The presented XGB-PTF imple… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?