The most common symptom of peripheral artery disease (PAD) is intermittent claudication, which consists of debilitating leg pain during walking. In clinical settings, the presence of PAD is often noninvasively evaluated using the ankle–brachial index and imaging of the arterial supply. Furthermore, various questionnaires and functional tests are commonly used to measure the severity and negative effect of PAD on quality of life. However, these evaluations only provide information on vascular insufficiency and severity of the disease, but not regarding the complex mechanisms underlying walking impairments in patients with PAD. Biomechanical analyses using motion capture and ground reaction force measurements can provide insight into the underlying mechanisms to walking impairments in PAD. This review analyzes the application of biomechanics tools to identify gait impairments and their clinical implications on rehabilitation of patients with PAD. A total of 18 published journal articles focused on gait biomechanics in patients with PAD were studied. This narriative review shows that the gait of patients with PAD is impaired from the first steps that a patient takes and deteriorates further after the onset of claudication leg pain. These results point toward impaired muscle function across the ankle, knee, and hip joints during walking. Gait analysis helps understand the mechanisms operating in PAD and could also facilitate earlier diagnosis, better treatment, and slower progression of PAD.