Machine-learning based prediction of hydrogen/methane mixture solubility in brine
Farag M. A. Altalbawy,
Mustafa Jassim Al-saray,
Krunal Vaghela
et al.
Abstract:With regard to underground hydrogen storage projects, presuming that the hydrogen storage site has served as a repository for methane, the coexistence of a blend of methane and hydrogen is anticipated during the incipient stage of hydrogen storage. Therefore, the solubility of hydrogen/methane mixtures in brine becomes imperative. On the contrary, laboratory tasks of such measurements are hard because of its extreme corrosion ability and flammability, hence modeling methodologies are highly preferred. Therefor… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.