The increased use of transition fuels, such as natural gas, and the resulting increase in methane emissions have resulted in a need for novel methane storage materials. Metal−organic frameworks (MOFs) have shown promise as efficient storage materials. A virtually limitless number of potential MOFs can be hypothesized, which exhibit a wide variety of different structural and chemical characteristics. Because of the numerous possibilities, identification of the best MOF for methane storage can be a potentially challenging problem. In this work, determination of the best such MOF was cast as an inverse function problem. The function, a random forest (RF) model using 12 structural and chemical descriptors, was trained on 10% of a data set consisting of 130 398 hypothetical MOFs (hMOFs) to predict simulated methane uptake. The RF model was tested on the remaining 90% of the data. After validation, a genetic algorithm (GA) was used to evolve in silico the best MOFs for methane adsorption. The RF model was imbedded into the GA as the fitness function to predict the methane uptake of the evolved MOFs (eMOFs). The best 15 eMOFs matched hMOFs found in the top 1% of the database. Nine of the 15 eMOFs were found in the top 0.1%. More impressively, two of the eMOFs matched the top two hypothetical MOFs with the highest methane uptake values out of the entire database of 130 398 MOFs. Further, by leveraging the ensemble nature of the GA, it was possible to characterize the importance of the different material properties for methane adsorption, providing fundamental insight for future material design strategies.