“…Nevertheless, one study adopted cost-sensitive learning [ 22 ] to deal with the unbalanced dataset. The most used algorithms were Random Forest (RF) [ 10 , 12 , 13 , 14 , 15 , 16 , 19 , 21 , 22 , 25 , 30 , 31 , 32 , 36 , 38 , 39 ], Logistic Regression (LR) [ 10 , 11 , 14 , 16 , 18 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 29 , 30 , 31 , 32 , 34 , 36 ], Decision Tree (DT) [ 15 , 16 , 21 , 23 , 25 , 26 , 27 , 28 , 31 , 32 , 36 ], Support Vector Machine (SVM) [ 10 , 12 , 21 , 22 , 25 , 26 , 27 , 28 , 30 , ...…”