Purpose of review
Tumor volume and heterogenicity are associated with diagnosis and prognosis of urological cancers, and assessed by conventional imaging. Quantitative imaging, Radiomics, using advanced mathematical analysis may contain information imperceptible to the human eye, and may identify imaging-based biomarkers, a new field of research for individualized medicine. This review summarizes the recent literature on radiomics in kidney and prostate cancers and the future perspectives.
Recent findings
Radiomics studies have been developed and showed promising results in diagnosis, in characterization, prognosis, treatment planning and recurrence prediction in kidney tumors and prostate cancer, but its use in guiding clinical decision-making remains limited at present due to several limitations including lack of external validations in most studies, lack of prospective studies and technical standardization.
Summary
Future challenges, besides developing prospective and validated studies, include automated segmentation using artificial intelligence deep learning networks and hybrid radiomics integrating clinical data, combining imaging modalities and genomic features. It is anticipated that these improvements may allow identify these noninvasive, imaging-based biomarkers, to enhance precise diagnosis, improve decision-making and guide tailored treatment.