Machine Learning Based Reactivity Prediction of Fly Ash Type F Produced from South Korea
Woo-Young Park,
Juhyuk Moon
Abstract:Fly ash (FA) is the most commonly used supplementary cementitious material in the world. However, the reactivity of FA varies substantially. In this study, new machine learning (ML) model has been developed to efficiently predict the amorphous content in FA type F. Compared to the existing ML model using types F and C of FA from different countries, this study more focused on the improved prediction of FA type F only produced from South Korea. It was found that the contents of CaO and SiO2 impact high in predi… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.