The economic viability of renewable energy generation is vital for sustainability. Ensuring that optimal operation is always achieved, using energy management systems and control algorithms, is essential in this endeavor. Here, a new real-time pricing scheme, the Danish flexible pricing scheme, illustrates how residential PV and battery systems can optimize the electricity bill of households, without changing consumption behavior or providing grid services in exchange. This means that the only addition is PV production, storage, and control. A case study is constructed from Danish household consumption data, irradiance measurements, and recorded spot prices. With the input data, the pricing scheme, and the energy flow, simulation models are computed in MATLAB, thereby validating the algorithmic potential and finding the best strategy for charging and discharging the energy storage unit. Different methods are compared to list the viable options and evaluate them, based on the economic feasibility for the household. Furthermore, a discussion of the system implementation is also included to highlight technical difficulties, co-integration opportunities, short-comings, and advantages present in the case study. In conclusion, it is possible to make renewable energy generation, and storage, viable for a Danish residential household under the new pricing scheme.