Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose of review The integration of artificial intelligence (AI) in nonoperating room anesthesia (NORA) represents a timely and significant advancement. As the demand for NORA services expands, the application of AI is poised to improve patient selection, perioperative care, and anesthesia delivery. This review examines AI's growing impact on NORA and how it can optimize our clinical practice in the near future. Recent findings AI has already improved various aspects of anesthesia, including preoperative assessment, intraoperative management, and postoperative care. Studies highlight AI's role in patient risk stratification, real-time decision support, and predictive modeling for patient outcomes. Notably, AI applications can be used to target patients at risk of complications, alert clinicians to the upcoming occurrence of an intraoperative adverse event such as hypotension or hypoxemia, or predict their tolerance of anesthesia after the procedure. Despite these advances, challenges persist, including ethical considerations, algorithmic bias, data security, and the need for transparent decision-making processes within AI systems. Summary The findings underscore the substantial benefits of AI in NORA, which include improved safety, efficiency, and personalized care. AI's predictive capabilities in assessing hypoxemia risk and other perioperative events, have demonstrated potential to exceed human prognostic accuracy. The implications of these findings advocate for a careful yet progressive adoption of AI in clinical practice, encouraging the development of robust ethical guidelines, continual professional training, and comprehensive data management strategies. Furthermore, AI's role in anesthesia underscores the need for multidisciplinary research to address the limitations and fully leverage AI's capabilities for patient-centered anesthesia care.
Purpose of review The integration of artificial intelligence (AI) in nonoperating room anesthesia (NORA) represents a timely and significant advancement. As the demand for NORA services expands, the application of AI is poised to improve patient selection, perioperative care, and anesthesia delivery. This review examines AI's growing impact on NORA and how it can optimize our clinical practice in the near future. Recent findings AI has already improved various aspects of anesthesia, including preoperative assessment, intraoperative management, and postoperative care. Studies highlight AI's role in patient risk stratification, real-time decision support, and predictive modeling for patient outcomes. Notably, AI applications can be used to target patients at risk of complications, alert clinicians to the upcoming occurrence of an intraoperative adverse event such as hypotension or hypoxemia, or predict their tolerance of anesthesia after the procedure. Despite these advances, challenges persist, including ethical considerations, algorithmic bias, data security, and the need for transparent decision-making processes within AI systems. Summary The findings underscore the substantial benefits of AI in NORA, which include improved safety, efficiency, and personalized care. AI's predictive capabilities in assessing hypoxemia risk and other perioperative events, have demonstrated potential to exceed human prognostic accuracy. The implications of these findings advocate for a careful yet progressive adoption of AI in clinical practice, encouraging the development of robust ethical guidelines, continual professional training, and comprehensive data management strategies. Furthermore, AI's role in anesthesia underscores the need for multidisciplinary research to address the limitations and fully leverage AI's capabilities for patient-centered anesthesia care.
Clinical decision support systems (CDSS) employing data-driven technology such as artificial intelligence, machine- and statistical-learning are increasingly deployed in healthcare settings. These systems often provide clinicians with diagnostic, prognostic, or risk scores modelled from curated patient-level data and frequently involve iterative and non-deterministic optimisation of flexible, parameterised models. All of these data and algorithms have uncertainties associated with them that should be taken into account when used to support clinical decisions at the patient level. This scoping review aims to describe the literature on how deployed data-driven CDSSs present information about uncertainty to their intended users. We describe common clinical applications of CDSSs, characterise the decisions that are being supported, and examine how the CDSS provides outputs to end users, including uncertainty at the individual patient level, as well as indirect measures such as CDSS performance against a reference standard. We conclude with a discussion and recommendations on how CDSS development can be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.