2024
DOI: 10.3389/fmed.2024.1407354
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning-based risk prediction of acute kidney disease and hospital mortality in older patients

Xinyuan Wang,
Lingyu Xu,
Chen Guan
et al.

Abstract: IntroductionAcute kidney injury (AKI) is a prevalent complication in older people, elevating the risks of acute kidney disease (AKD) and mortality. AKD reflects the adverse events developing after AKI. We aimed to develop and validate machine learning models for predicting the occurrence of AKD, AKI and mortality in older patients.MethodsWe retrospectively reviewed the medical records of older patients (aged 65 years and above). To explore the trajectory of kidney dysfunction, patients were categorized into fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?