This study comprehensively investigates the impact of various parameters on aluminum matrix composites (AMCs) fabricated using the powder metallurgy (PM) technique. An Al-Cu matrix composite (2xxx series) was employed in the current study, and Al2O3 was used as a reinforcement. The performance evaluation of the Al-4Cu/Al2O3 composite involved analyzing the influence of the Al2O3 weight percent (wt. %), the height-to-diameter ratio (H/D) of the compacted samples, and the compaction pressure. Different concentrations of the Al2O3 reinforcement, namely 0%, 2.5%, 5.0%, 7.5%, and 10% by weight, were utilized, while the compaction process was conducted for one hour under varying pressures of 500, 600, 700, 800, and 900 MPa. The compacted Al-4Cu/Al2O3 composites were in the form of cylindrical discs with a fixed diameter of 20 mm and varying H/D ratios of 0.75, 1.0, 1.25, 1.5, and 2.0. Moreover, the machine learning (ML), design of experiment (DOE), response surface methodology (RSM), genetic algorithm (GA), and hybrid DOE-GA methodologies were utilized to thoroughly investigate the physical properties, such as the relative density (RD), as well as the mechanical properties, including the hardness distribution, fracture strain, yield strength, and compression strength. Subsequently, different statistical analysis approaches, including analysis of variance (ANOVA), 3D response surface plots, and ML approaches, were employed to predict the output responses and optimize the input variables. The optimal combination of variables that demonstrated significant improvements in the RD, fracture strain, hardness distribution, yield strength, and compression strength of the Al-4Cu/Al2O3 composite was determined using the RSM, GA, and hybrid DOE-GA approaches. Furthermore, the ML and RSM models were validated, and their accuracy was evaluated and compared, revealing close agreement with the experimental results.