2020
DOI: 10.1080/23737484.2020.1752849
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning classifiers do not improve the prediction of academic risk: Evidence from Australia

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 24 publications
0
5
0
2
Order By: Relevance
“…Interestingly, there are times when such ML methods do not outperform conventional linear regression (e.g. Cornell-Farrow, & Garrard, 2020;Kotsiantis et al, 2004). Several reasons have been put forth; some authors argue that when ML methods are used with sample sizes that are too small, any non-linearities present may go undetected (Huang & Fang, 2013;Kotsiantis et al, 2004).…”
Section: Use Of ML Methods For Predicting Academic Performancementioning
confidence: 99%
“…Interestingly, there are times when such ML methods do not outperform conventional linear regression (e.g. Cornell-Farrow, & Garrard, 2020;Kotsiantis et al, 2004). Several reasons have been put forth; some authors argue that when ML methods are used with sample sizes that are too small, any non-linearities present may go undetected (Huang & Fang, 2013;Kotsiantis et al, 2004).…”
Section: Use Of ML Methods For Predicting Academic Performancementioning
confidence: 99%
“…Similar to the previous reference in ref [15], the authors employed linear regression (accuracy = 64.25), decision tree (accuracy = 59.8), and naive Bayes (accuracy = 71) algorithms in data analysis with 303 input features including student demographics, the salaries of educators, and assessment data. Moreover, in ref [12], logistic regression (accuracy = 0.839), elastic net (accuracy = 0.839), decision tree (accuracy = 0.767), random forest (accuracy = 0.828) and neural network (accuracy = 0.833) algorithms were utilized to evaluate student performance in English lessons. Their database was NA-PLAN which is a set of standardized literacy and numeracy tests sat by all students in Australia and the tests cover five learning areas known as "test domains" (reading, writing, spelling, grammar and punctuation, and numeracy), alongside student background information which is collected by schools from students' parents via enrolment forms.…”
Section: Evaluation Of Student Performancementioning
confidence: 99%
“…In this study, student performance was evaluated by supervised ML models. Studies that had similar data have used random forest [42][43][44], gradient boosting [41], support vector machines (SVM) [45][46][47], elastic net [12], naive Bayes [15,34,48], logistic regression [12,41,49], decision tree [42,50,51], and ANN [52][53][54] algorithms. Therefore, the preprocessed data executed on previously mentioned models and best performance with the default parameters were obtained by RF, SVM and LR models; Thus, these models were selected for more tuning and analysis.…”
Section: Model Selectionmentioning
confidence: 99%
See 1 more Smart Citation
“…Es preciso indicar que estudios previos que tratan de identificar las variables que explican el rendimiento académico (López-García & Gutiérrez-Niño, 2018), señalan el nivel socioeconómico (Masci et al, 2018;Maulida & Kariyam, 2017;Rodríguez-Hernández et al, 2021;Salal & Abdullaev, 2020), el género (Abdul-Aziz et al, 2015;Chacón-Vargas & Roldán-Villalobos, 2021;Guo et al, 2015), la ubicación geográfica de las instituciones (Ariza et al, 2021;Froiland & Oros, 2014;Lau et al, 2019), los antecedentes académicos de los estudiantes (Abdul-Aziz et al, 2015;Chacón-Vargas & Roldán-Villalobos, 2021;Febro, 2019;Chaparro Rodríguez, Jaimes Márquez & Prada Núñez, 2018), los recursos materiales que disponen los estudiantes y las instituciones (Ariza et al, 2021;Castrillón et al, 2020;Masci et al, 2018;Claro-Vásquez, 2017), la formación previa de los padres (Chacón-Vargas & Roldán-Villalobos, 2021;Cornell-Farrow & Garrard, 2020;Galster et al, 2016;Kumari et al, 2018), la experiencia docente (Ariza et al, 2021;Castrillón et al, 2020;Cavadia, Payares, Herrera, JAramillo & Meza, 2019;Khan & Ghosh, 2018;Lisboa-Bartholo & Da-Costa, 2016), entre otras, como las variables predominantes, sin embargo, no se identifica evidencia contundente y empírica asociada a la adicción a las Redes Sociales y la Internet (RSI), que influyan en la obtención del logro de aprendizaje (Espinel-Rubio, Hernández-Suárez & Rojas-Suárez, 2020;Gentile et al, 2014). Para Mira y Ruiz Callado (2017), el consumo de drogas y el regreso a casa, se constituyeron en variables productoras de rendimiento acad...…”
Section: Introductionunclassified