2018 3rd International Conference on Control and Robotics Engineering (ICCRE) 2018
DOI: 10.1109/iccre.2018.8376427
|View full text |Cite
|
Sign up to set email alerts
|

Machine learning comparison for step decision making of a bipedal robot

Abstract: This paper0 F 1 presents the results of several machine learning techniques for step decision in a bipedal robot. The custom developed bipedal robot does not utilize electric motors as actuators and as a result has the disadvantage of imprecise movements. The robot is inherently unstable and maintain its stability by making steps. The classifiers had to learn when and which leg must be moved in order to maintain stability and locomotion. Methods like: Decision tree, Linear/Quadratic Discriminant, SVM, KNN and … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 17 publications
0
1
0
Order By: Relevance
“…• Transport. In this field, several studies focus on process improvement, such as speed and accuracy in lane changing maneuvers when driving on highways [97], driving terrestrial vehicles on rural roads [98], robots learning routes through linguistic decision trees [99], and methods used in biped robot walking processes [100,101].…”
Section: Supervised Learningmentioning
confidence: 99%
“…• Transport. In this field, several studies focus on process improvement, such as speed and accuracy in lane changing maneuvers when driving on highways [97], driving terrestrial vehicles on rural roads [98], robots learning routes through linguistic decision trees [99], and methods used in biped robot walking processes [100,101].…”
Section: Supervised Learningmentioning
confidence: 99%