Machine Learning-Driven Stroke Prediction Using Independent Dataset
Fatin Natasha Binti Zahari,
Kannan Ramakrishnan
Abstract:The incidence of stroke cases has witnessed a rapid global rise, affecting not only the elderly but also individuals across all age groups. Accurate prediction of stroke occurrence demands the utilization of extensive data pre-processing techniques. Moreover, the automation of early stroke forecasting is crucial to prevent its onset at the initial stage. In this study, stroke prediction models are evaluated to estimate the likelihood of stroke based on various symptoms such as age, gender, pre-existing medical… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.