Machine learning elucidates electrophysiological properties predictive of multi- and single-firing human and mouse dorsal root ganglia neurons
Nesia A. Zurek,
Sherwin Thiyagarajan,
Reza Ehsanian
et al.
Abstract:Human and mouse dorsal root ganglia (hDRG and mDRG) neurons are important tools in understanding the molecular and electrophysiological mechanisms that underlie nociception and drive pain behaviors. One of the simplest differences in firing phenotypes is that neurons are single-firing (exhibit only one action potential) or multi-firing (exhibit 2 or more action potentials). To determine if single- and multi-firing hDRG exhibit differences in intrinsic properties, firing phenotypes, and AP waveform properties, … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.