Machine Learning for Automatic Detection of Velopharyngeal Dysfunction: A Preliminary Report
Claiborne Lucas,
Ricardo Torres-Guzman,
Andrew J. James
et al.
Abstract:Background:
Even after palatoplasty, the incidence of velopharyngeal dysfunction (VPD) can reach 30%; however, these estimates arise from high-income countries (HICs) where speech-language pathologists (SLP) are part of standardized cleft teams. The VPD burden in low- and middle-income countries (LMICs) is unknown. This study aims to develop a machine-learning model that can detect the presence of VPD using audio samples alone.
Methods:
Case and control… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.