In this research, we aim to determine the water potability using three machine learning classification algorithms: decision tree, gradient boosting and bagging classifier. These algorithms were trained and tested on a dataset of water quality measurements. The outcomes of the experiment showed that the gradient boosting algorithm achieved the highest F1-score of 0.78 among all the algorithms. This indicates that the gradient boosting algorithm was most effective in correctly identifying both the safe and contaminated water samples. The results of this study demonstrate that gradient boosting is a promising approach for determining water potability and can be used as a reliable method for water quality assessment.