Machine learning for genomic and pedigree prediction in sugarcane
Minoru Inamori,
Tatsuro Kimura,
Masaaki Mori
et al.
Abstract:Sugarcane (Saccharum spp.) plays a crucial role in global sugar production; however, the efficiency of breeding programs has been hindered by its heterozygous polyploid genomes. Considering non‐additive genetic effects is essential in genome prediction (GP) models of crops with highly heterozygous polyploid genomes. This study incorporates non‐additive genetic effects and pedigree information using machine learning methods to track sugarcane breeding lines and enhance the prediction by assessing the degree of … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.