2018
DOI: 10.1051/matecconf/201820000015
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning for Supply Chain’s Big Data: State of the art and application to Social Networks’ data

Abstract: In the context of today ’s pattern of globalization and a huge amount of information, a smart supply management chain is required. Naturally, statistics and operations research are used for optimizing supply and demand objectives. However, the new context brings out new opportunities at descriptive, predictive and prescriptive levels for supply chain network design, logistics and distribution and strategic sourcing. The key question is still how to capture and to use information. One striking example can be ta… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 17 publications
0
1
0
Order By: Relevance
“…El-Khchine vd. [28], tavuk tedarik zinciri yönetiminde Twitter verisinin ve K en yakın komşu noktalar, lojistik regresyon ve destekçi vektör makinesi algoritmalarının kullanımına dayanan bir analitik yaklaşım sunmuşlardır. Çalışma, tavuk ürünlerine ilişkin ana ilgi alanlarını tanımlayarak tüketici merkezli tedarik zincirinin gelişmesine öneriler getirmiştir.…”
Section: Fan Ve Gordonunclassified
“…El-Khchine vd. [28], tavuk tedarik zinciri yönetiminde Twitter verisinin ve K en yakın komşu noktalar, lojistik regresyon ve destekçi vektör makinesi algoritmalarının kullanımına dayanan bir analitik yaklaşım sunmuşlardır. Çalışma, tavuk ürünlerine ilişkin ana ilgi alanlarını tanımlayarak tüketici merkezli tedarik zincirinin gelişmesine öneriler getirmiştir.…”
Section: Fan Ve Gordonunclassified
“…This review will explore the role of analytics in predicting and mitigating the impact of COVID-19 on global supply chains, as well as its implications for supply chain innovation and robustness capability (Shamout, 2019). Additionally, the review will examine the application and impact of new technologies, such as artificial intelligence, big data analytics, and machine learning, in managing supply chain disruptions during the pandemic (Muhammad & Manzoor, 2021;El-Khchine et al, 2018).…”
Section: Introductionmentioning
confidence: 99%

The Impact of COVID-19 on supply chain analytics: A global review

Bankole Ibrahim Ashiwaju,
Israel Osejie Okoduwa,
Jeremiah Olawumi Arowoogun
et al. 2024
World J. Adv. Res. Rev.