2024
DOI: 10.3390/app14114867
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning in Assessing Canine Bone Fracture Risk: A Retrospective and Predictive Approach

Ernest Kostenko,
Jakov Šengaut,
Algirdas Maknickas

Abstract: In the ever-evolving world of veterinary care, the occurrence of bone fractures in canines poses a common and complex problem, especially in extra-small breeds and dogs that are less than 1 year old. The objective of this research is to fill a gap in predicting the risk of canine bone fractures. A machine learning method using a random forest classifier was constructed. The algorithm was trained on a dataset consisting of 2261 cases that included several factors, such as canine age, gender, breed, and weight. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?