2015
DOI: 10.1080/02564602.2015.1010611
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning in Automatic Speech Recognition: A Survey

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
51
0
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 123 publications
(52 citation statements)
references
References 40 publications
0
51
0
1
Order By: Relevance
“…We also apply i) a time delay, randomly selected in [0, 50], to one spectrogram and ii) a perturbation to both of them according to the formula ( ) = Φ( 1 ( ), 1 [ , ] = [1,9]. All these parameters can be chosen by the user, the value here reported are those used in our experiments.…”
Section: Spectrogramemdaaugmenter Applies the Equalized Mixture Data mentioning
confidence: 99%
See 1 more Smart Citation
“…We also apply i) a time delay, randomly selected in [0, 50], to one spectrogram and ii) a perturbation to both of them according to the formula ( ) = Φ( 1 ( ), 1 [ , ] = [1,9]. All these parameters can be chosen by the user, the value here reported are those used in our experiments.…”
Section: Spectrogramemdaaugmenter Applies the Equalized Mixture Data mentioning
confidence: 99%
“…Sound classification and recognition has been included among the pattern recognition tasks for different application domains, e.g. speech recognition [1], music classification [2], environmental sound recognition or biometric identification [3]. In the traditional pattern recognition framework (preprocessing, feature extraction and classification) features have generally been extracted from the actual audio traces (e.g.…”
Section: Introductionmentioning
confidence: 99%
“…Moreover, the process through which the ANNs were initialized greatly affect the performance of these networks. Therefore, deep neural networks were preferred for large quantity of unlabeled data [6]. These developments have been listed in Table 1.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The speed in turn depends on the computation times whereas accuracy depends on the percentage of the recognized words. Accuracy is the word recognition rate (WRR), which is given by equation (6) as follows:…”
Section: A Parameters For Checking the Performance Of An Asr Systemmentioning
confidence: 99%
“… da íris (Daugman, 2004;Bowyer, Hollingsworth, & Flynn, 2013): uma técnica que se baseia na extração de características da textura da íris; ela é interessante por apresentar 42 boa acurácia; necessita de equipamentos específicos para gerar imagens dos olhos e possui limitações quanto a movimentação da cabeça e da pálpebra;  da face (Parkhi, Vedaldi, & Zisserman, 2015;Jafri & Arabnia, 2009): busca identificar pessoas por diferentes características ligadas a geometria da face e outras particularidades; sua precisão é boa e tem crescido, principalmente com a evolução dos dispositivos fotográficos e das técnicas de modo geral; necessita de dispositivos para capturar imagens e é intrusiva;  da voz (Padmanabhan & Premkumar, 2015): identifica pessoas através do padrão de voz; apresenta boa acurácia em ambientes controlados; porém, pode ter problemas com ruídos sonoros e distância do microfone, além de ser intrusiva;  da digital dos dedos e mãos (Ali, Mahale, Yannawar, & Gaikwad, 2016;Maio, Maltoni, Cappelli, Wayman, & Jain, 2002): o reconhecimento de digitais é amplamente utilizado; possui boa acurácia, porém, necessita de hardware específico para capturar as digitais.…”
Section: Reconhecimento De Usuáriounclassified